4.7 Article

Blind identification of multichannel FIR blurs and perfect image restoration

Journal

IEEE TRANSACTIONS ON IMAGE PROCESSING
Volume 9, Issue 11, Pages 1877-1896

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/83.877210

Keywords

blind blur estimation; blind image restoration; multichannel image restoration

Ask authors/readers for more resources

Despite its practical importance in image processing and computer vision, blind blur identification and blind image restoration have so far been addressed under restrictive assumptions such as all-pole stationary image models blurred by zero- or minimum-phase point-spread functions. Relying upon diversity (availability of a sufficient number of multiple blurred images), we develop blind FIR blur identification and order determination schemes. Apart from a minimal persistence of excitation condition (also present with nonblind setups), the inaccessible input image is allowed to be deterministic or random and of unknown color or distribution. With the blurs satisfying a certain co-primeness condition in addition, we establish existence and uniqueness results which guarantee that single-input/multiple-output FIR blurred images can be restored blindly, though perfectly in the absence of noise, using linear FIR filters. Results of simulations employing the blind order determination, blind blur identification, and blind image restoration algorithms are presented. When the SNR is high, direct image restoration is found to yield better results than indirect image restoration which employs the estimated blurs. In low SNR, indirect image restoration performs well while the direct restoration results vary with the delay but improve with larger equalizer; orders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available