4.7 Article

Comparative analysis of algorithms for next-generation sequencing read alignment

Journal

BIOINFORMATICS
Volume 27, Issue 20, Pages 2790-2796

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btr477

Keywords

-

Funding

  1. National Science Foundation [IIS-0916102]
  2. Div Of Information & Intelligent Systems
  3. Direct For Computer & Info Scie & Enginr [0916102] Funding Source: National Science Foundation

Ask authors/readers for more resources

Motivation: The advent of next-generation sequencing (NGS) techniques presents many novel opportunities for many applications in life sciences. The vast number of short reads produced by these techniques, however, pose significant computational challenges. The first step in many types of genomic analysis is the mapping of short reads to a reference genome, and several groups have developed dedicated algorithms and software packages to perform this function. As the developers of these packages optimize their algorithms with respect to various considerations, the relative merits of different software packages remain unclear. However, for scientists who generate and use NGS data for their specific research projects, an important consideration is choosing the software that is most suitable for their application. Results: With a view to comparing existing short read alignment software, we develop a simulation and evaluation suite, Seal, which simulates NGS runs for different configurations of various factors, including sequencing error, indels and coverage. We also develop criteria to compare the performances of software with disparate output structure (e.g. some packages return a single alignment while some return multiple possible alignments). Using these criteria, we comprehensively evaluate the performances of Bowtie, BWA, mr- and mrsFAST, Novoalign, SHRiMP and SOAPv2, with regard to accuracy and runtime. Conclusion: We expect that the results presented here will be useful to investigators in choosing the alignment software that is most suitable for their specific research aims. Our results also provide insights into the factors that should be considered to use alignment results effectively. Seal can also be used to evaluate the performance of algorithms that use deep sequencing data for various purposes (e.g. identification of genomic variants).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available