4.7 Article

Functional integration of a metabolic network model and expression data without arbitrary thresholding

Journal

BIOINFORMATICS
Volume 27, Issue 4, Pages 541-547

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/btq702

Keywords

-

Funding

  1. National Science Foundation (GRFP) [0643548]
  2. Div Of Chem, Bioeng, Env, & Transp Sys
  3. Directorate For Engineering [0643548] Funding Source: National Science Foundation

Ask authors/readers for more resources

Motivation: Flux balance analysis (FBA) has been used extensively to analyze genome-scale, constraint-based models of metabolism in a variety of organisms. The predictive accuracy of such models has recently been improved through the integration of high-throughput expression profiles of metabolic genes and proteins. However, extensions of FBA often require that such data be discretized a priori into sets of genes or proteins that are either 'on' or 'off'. This procedure requires selecting relatively subjective expression thresholds, often requiring several iterations and refinements to capture the expression dynamics and retain model functionality. Results: We present a method for mapping expression data from a set of environmental, genetic or temporal conditions onto a metabolic network model without the need for arbitrary expression thresholds. Metabolic Adjustment by Differential Expression (MADE) uses the statistical significance of changes in gene or protein expression to create a functional metabolic model that most accurately recapitulates the expression dynamics. MADE was used to generate a series of models that reflect the metabolic adjustments seen in the transition from fermentative-to glycerol-based respiration in Saccharomyces cerevisiae. The calculated gene states match 98.7% of possible changes in expression, and the resulting models capture functional characteristics of the metabolic shift.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available