4.6 Article

The effects of memory load on event-related EEG desynchronization and synchronization

Journal

CLINICAL NEUROPHYSIOLOGY
Volume 111, Issue 11, Pages 2071-2078

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/S1388-2457(00)00429-6

Keywords

EEG; event-related desynchronization/event-related synchronization; alpha; theta; working memory; memory load

Ask authors/readers for more resources

Objectives: To examine the effects of working memory load on the event-related desynchronization (ERD) and synchronization (ERS) of several narrow EEG frequency bands. Methods: ERD/ERS responses of the 4-6, 6-8, 8-10 and 10-12 Hz EEG frequency bands were studied in 24 normal subjects performing a visual sequential letter task (so-called n-back task) in which memory load was varied from 0 to 2. Results: In the 3-6 Hz theta frequency band, a long-lasting synchronization was observed in the anterior electrodes, especially after the presentation of targets. In the 6-8 and 8-10 Hz frequency bands, anterior ERS was elicited especially in the 2-back condition (highest memory load). In contrast to the responses of the 8-10 Hz frequency band, in the 10-12 Hz frequency band the 2-back experimental condition elicited the greatest ERD. Conclusions: In the highest memory load (2-back) experimental condition the attentional capacities were most probably exceeded, resulting in 6-8 and 8-10 Hz ERS. This might reflect an inhibition of such brain areas (frontal cortices) no longer involved in task completion when alternative strategies are needed and utilized. These more 'cognitive' strategies were then reflected as an increase in 10-12 Hz ERD. Additionally, our results support the assumption that the simultaneously recorded ERD/ERS responses of different narrow EEG frequency bands differ and reflect distinct aspects of information processing. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available