4.4 Review

Modeling trace gas emissions from agricultural ecosystems

Journal

NUTRIENT CYCLING IN AGROECOSYSTEMS
Volume 58, Issue 1-3, Pages 259-276

Publisher

SPRINGER
DOI: 10.1023/A:1009859006242

Keywords

agroecosystem; trace gas; modeling

Categories

Ask authors/readers for more resources

A computer simulation model was developed for predicting trace gas emissions from agricultural ecosystems. The denitrification-decomposition (DNDC) model consists of two components. The first component, consisting of the soil climate, crop growth, and decomposition submodels, predicts soil temperature, moisture, pH, Eh, and substrate concentration profiles based on ecological drivers (e.g., climate, soil, vegetation, and anthropogenic activity). The second component, consisting of the nitrification, denitrification, and fermentation submodels, predicts NH3, NO, N2O, and CH4 fluxes based on the soil environmental variables. Classical laws of physics, chemistry, or biology or empirical equations generated from laboratory observations were used in the model to parameterize each specific reaction. The entire model links trace gas emissions to basic ecological drivers. Through validation against data sets of NO, N2O, CH4, and NH3 emissions measured at four agricultural sites, the model showed its ability to capture patterns and magnitudes of trace gas emissions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available