4.7 Article

Enzyme inhibition and protein-binding action of the procyanidin-rich French maritime pine bark extract, pycnogenol: Effect on xanthine oxidase

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 48, Issue 11, Pages 5630-5639

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf000618s

Keywords

bioflavonoids; enzyme inhibition; procyanidins; protein binding; pycnogenol

Ask authors/readers for more resources

Pycnogenol, an extract from French maritime pine bark (PBE), is a complex mixture of bioflavonoids with reported protective effects against disease. PBE is an effective scavenger of reactive oxygen species, and its main constituents are procyanidins of various chain lengths. To find out the biochemical basis of action of on enzyme activity, involvement of its redox activity and direct binding to the enzyme in its subsequent action on enzyme activity have been investigated. PBE dose-dependently inhibited the activities of xanthine oxidase, xanthine dehydrogenase, horseradish peroxidase, and lipoxygenase, but it did not affect the activities of glucose oxidase, ascorbate oxidase, or elastase. To characterize the mechanism of PBE action, studies were focused on xanthine oxidase and glucose oxidase. Under non-denaturing conditions, PBE changed the electrophoretic mobility of xanthine oxidase but not of glucose oxidase. Gel filtration chromatography confirmed higher molecular weight complexes of xanthine oxidase and xanthine dehydrogenase in the presence of PBE. It was found that hydrophobic bonding might be the dominant mode of interaction between PBE and xanthine oxidase. The importance of the binding in the effect of PBE on enzyme activity was supported by the observation that PBE binds to and inhibits catalase, but not superoxide dismutase. However, no correlation was found between superoxide/hydroxyl radical scavenging activity and the inhibitory effect on xanthine oxidase activity of PBE, various purified flavonoids, or other complex mixtures of bioflavonoids. The results indicate that PBE selectively inhibits xanthine oxidase through binding to the enzyme rather than by the redox activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available