4.7 Article

NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over a pitch based ACF of very large surface area

Journal

FUEL
Volume 79, Issue 14, Pages 1713-1723

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0016-2361(00)00034-X

Keywords

NO oxidation; activated carbon fiber; extended kinetics

Ask authors/readers for more resources

Kinetics on the oxidation of NO was studied over a pitch based activated carbon fiber of very large surface area (pitch ACF) by changing NO and O-2 concentrations in a flow reactor. NO was initially removed through adsorption until saturation, increasing gradually its outlet concentration. In the mean time, NO2 was found in the gas phase after an induction period to increase its concentration very early to the stationary one. It is noted that a maximum NO concentration was observed just before reaching the stationary concentration, where the adsorption of NO was almost saturated. High concentrations of both O-2 and NO increased the amount of saturated adsorption and the stationary conversion of NO, Freundlich equation being well fitted to the observed adsorption and conversion. The reaction order larger than unity in NO suggests multi-molecular intermediate over the ACF surface for oxidation as the dimer has been proposed in the gas phase oxidation of NO. The major adsorbed species found was NO2 over the ACF surface in the stationary state, although some NO was also found in TPD profile of adsorbed species even in the stationary state. Some reduction of surface NO2 at its desorption is suggested. A peculiar peak of the maximum NO concentration observed before the stationary conversion may reflect participation of NO to the multi-molecular intermediate which requires a large coverage of adsorbed NO2 before rapidly releasing NO2 from the surface to the gas phase. (C) 2000 Published by Elsevier Science Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available