4.8 Article

Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 17, Issue 11, Pages 1597-1609

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/oxfordjournals.molbev.a026259

Keywords

Drosophila genomics; genome evolution; interspersed repeats; mobile elements; repetitive DNA; satellite DNA; transposons

Ask authors/readers for more resources

SGM (Drosophila subobscura, Drosophila guanche, and Drosophila madeirensis) transposons are a family of transposable elements (TEs) in Drosophila with some functional and structural similarities to miniature inverted-repeat transposable elements (MITEs). These elements were recently active in D. subobscura and D. madeirensis (1-2 MYA), but in D. guanche (3-4 MYA), they gave rise to a species-specifically amplified satellite DNA making up approximately 10% of its genome. SGM elements were already active in the common ancestor of all three species, giving rise to the A-type specific promoter section of the P-related neogene cluster. SGM sequences are similar to elements found in other obscura group species, such as the ISY elements in D. miranda and the ISamb elements in Drosophila ambigua. SGM elements are composed of different sequence modules, and some of them, i.e., LS and LS-core, are found throughout the Drosophila and Sophophora radiation with similarity to more distantly related TEs. The LS-core module is highly enriched in the noncoding sections of the Drosophila melanogaster genome, suggesting potential regulatory host gene functions. The SGM elements can be considered as a model system elucidating the evolutionary dynamics of mobile elements in their arms race with host-directed silencing mechanisms and their evolutionary impact on the structure and composition of their respective host genomes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available