4.5 Article

Inhibition of proteolysis by a cyclooxygenase inhibitor, indomethacin

Journal

NEUROCHEMICAL RESEARCH
Volume 25, Issue 11, Pages 1509-1515

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1023/A:1007684311023

Keywords

calpain; cyclooxygenase; free radicals; inhibitor; anti-inflammatory

Funding

  1. NINDS NIH HHS [NS-38146, NS-31622] Funding Source: Medline

Ask authors/readers for more resources

The effect of indomethacin, a non-steroidal anti-inflammatory drug upon purified calpain has been studied. Also, its effects upon Ca2+-mediated degradation of cytoskeletal proteins (neurofilament) in spinal cord homogenate has been investigated. A dose-dependent inhibition of purified calpain activity was observed. A 50% inhibition of C-14-caseinolytic activity was obtained with less than 1.1 mM of indomethacin while the activity was completely inhibited at 3.3 mM concentration. The inhibitory effect of ketorlac, another non-steroidal anti-inflammatory drug, upon calpain was weaker than that of indomethacin. The degradation of myelin basic protein (MBP) by cathepsin B, a lysosomal cysteine protease, was significantly inhibited by indomethacin. It also inhibited the Ca2+-mediated degradation of neurofilament protein (NFP) in spinal cord homogenate. The extent of NFP degradation was analyzed by SDS-PAGE and the inhibition shown by indomethacin was weaker than that observed with leupeptin and the calpain inhibitor E64-d. The inhibitory effect of indomethacin on the activity of multicatalytic proteinase complex was negligible. These results suggest that indomethacin, a non-steroidal anti-inflammatory drug and cyclooxygenase inhibitor also inhibits proteinases, including cathepsin B and calpain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available