4.2 Article

Depression of protein synthesis during diapause in embryos of the annual killifish Austrofundulus limnaeus

Journal

PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY
Volume 73, Issue 6, Pages 799-808

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/318106

Keywords

-

Ask authors/readers for more resources

Rates of protein synthesis are substantially depressed in diapause II embryos of Austrofundulus limnaeus. Inhibition of oxygen consumption and heat dissipation with cycloheximide indicates that 36% of the adenosine triphosphate (ATP) turnover in prediapausing embryos (8 d postfertilization [dpf]) is caused by protein synthesis; the contribution of protein synthesis to ATP turnover in diapause II embryos is negligible. In agreement with the metabolic data, incorporation of amino acids (radio-labeled via (CO2)-C-14) into perchloric acid-precipitable protein decreases by over 93% in diapause II embryos compared with embryos at 8 dpf. This result represents a 36% reduction in energy demand because of depression of protein synthesis during diapause. Adjusting for changes in the specific radioactivity of the free amino acid pool at the whole-embryo level yields rates of protein synthesis that are artifactually high and not supportable by the observed rates of oxygen consumption and heat dissipation during diapause. This result indicates a regionalized distribution of labeled amino acids likely dictated by a pattern of anterior to posterior cell cycle arrest. AMP/ATP ratios are strongly correlated with the decrease in rates of protein synthesis, which suggests a role for adenosine monophosphate (AMP) in the control of anabolic processes. The major depression of protein synthesis during diapause II affords a considerable reduction in energy demand and extends the duration of dormancy attainable in these embryos.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available