4.7 Article

Generalized variational density functional perturbation theory

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 113, Issue 17, Pages 7102-7109

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1312830

Keywords

-

Ask authors/readers for more resources

We present an implementation of variational perturbation theory in the framework of density functional theory. We use an ab initio pseudopotential scheme with a plane wave basis set and expand the energy functional up to second order in the perturbation. The approach is fairly general and does not rely on the representativeness of the perturbation through a Hamiltonian operator and does not require the use of canonical orbitals. Instead, a functional formulation is used to characterize the perturbation. Several types of applications are presented which illustrate the variety of linear response phenomena that can be treated with our method (vibrational modes, Raman scattering, and nuclear magnetic resonance chemical shift computations). In combination with advanced gradient correction formulas, an accurate description of second order effects in periodic and isolated systems can be achieved. (C) 2000 American Institute of Physics. [S0021-9606(00)30641-9].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available