4.4 Article

Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans

Journal

BIOGERONTOLOGY
Volume 14, Issue 1, Pages 73-87

Publisher

SPRINGER
DOI: 10.1007/s10522-012-9411-6

Keywords

Longevity; Nematodes; Probiotics; Aging; Innate immunity

Funding

  1. Japan Society for the Promotion of Science [23617017]
  2. Japan Science and Technology Agency
  3. Japan Society for the Promotion of Science for Young Scientist
  4. Osaka City University Graduate School of Human Life Science
  5. NIH National Center for Research Resources (NCRR)
  6. Grants-in-Aid for Scientific Research [21241005, 23617017] Funding Source: KAKEN

Ask authors/readers for more resources

Lactobacilli and bifidobacteria are probiotic bacteria that modify host defense systems and have the ability to extend the lifespan of the nematode Caenorhabditis elegans. Here, we attempted to elucidate the mechanism by which bifidobacteria prolong the lifespan of C. elegans. When the nematode was fed Bifidobacterium infantis (BI) mixed at various ratios with the standard food bacterium Escherichia coli strain OP50 (OP), the mean lifespan of worms was extended in a dose-dependent manner. Worms fed BI displayed higher locomotion and produced more offspring than control worms. The growth curves of nematodes were similar regardless of the amount of BI mixed with OP, suggesting that BI did not induce prolongevity effects through caloric restriction. Notably, feeding worms the cell wall fraction of BI alone was sufficient to promote prolongevity. The accumulation of protein carbonyls and lipofuscin, a biochemical marker of aging, was also lower in worms fed BI; however, the worms displayed similar susceptibility to heat, hydrogen peroxide, and paraquat, an inducer of free radicals, as the control worms. As a result of BI feeding, loss-of-function mutants of daf-16, jnk-1, aak-2, tol-1, and tir-1 exhibited a longer lifespan than OP-fed control worms, but BI failed to extend the lifespan of pmk-1, skn-1, and vhp-1 mutants. As skn-1 induces phase 2 detoxification enzymes, our findings suggest that cell wall components of bifidobacteria increase the average lifespan of C. elegans via activation of skn-1, regulated by the p38 MAPK pathway, but not by general activation of the host defense system via DAF-16.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available