4.6 Article

Chemical properties of decaying wood in an old-growth spruce forest and effects on soil chemistry

Journal

BIOGEOCHEMISTRY
Volume 122, Issue 1, Pages 1-13

Publisher

SPRINGER
DOI: 10.1007/s10533-014-0015-x

Keywords

Wood decay; Soil nutrient availability; Bark chemistry; Stemflow chemistry; Picea abies; Forest dynamics

Funding

  1. Stemmler Foundation, a member of the Stifterverband fur die Deutsche Wissenschaft

Ask authors/readers for more resources

Live trees influence the nutrient status of the soil by the interception of substances from the atmosphere, the uptake of nutrients from the soil, and the deposition of litter. In an unmanaged old-growth spruce mountain forest on acidic soil, we analyzed how the death and decay of spruce trees affects the acidity and element concentrations of the soil, tree bark (or outermost stemwood) and stemflow. Key study objective was to examine whether the element release from decaying deadwood significantly increases the available soil nutrient stocks in the senescence phase of coniferous forests. Bark and stemflow chemistry responded to the death and decay of the trees with lowered acidity and reduced nutrient concentrations, which was attributed to the gradual loss of the intercepting canopy surface. Bark and stemflow concentrations of base cations (K, Ca, Mg) showed a transient peak in the course of wood decay. Published evidence suggests that the variability in bark and stemflow chemistry detected across the sequence of wood decay stages was sufficient to shape the epiphytic lichen and bryophyte communities. The death and decay of spruce trees also resulted in elevated base saturation near standing deadwood. Downed deadwood had a negligible effect on soil chemistry, among others due to slow decomposition in the studied cold mountain forest. Soil acidity was not significantly affected by deadwood. The release of base cations from standing deadwood to the soil suggests that sparing part of the trees in managed forests from logging could counteract nutrient depletion through timber harvesting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available