4.5 Article

Bistability in the Ca2+/calmodulin-dependent protein kinase-phosphatase system

Journal

BIOPHYSICAL JOURNAL
Volume 79, Issue 5, Pages 2211-2221

Publisher

CELL PRESS
DOI: 10.1016/S0006-3495(00)76469-1

Keywords

-

Categories

Ask authors/readers for more resources

A mathematical model is presented of autophosphorylation of Ca2+/calmodulin-dependent protein kinase (CaMKII) and its dephosphorylation by a phosphatase. If the total concentration of CaMKII subunits is significantly higher than the phosphatase Michaelis constant, two stable steady states of the CaMKII autophosphorylation can exist in a Ca2+ concentration range from below the resting value of the intracellular [Ca2+] to the threshold concentration for induction of long-term potentiation (LTP). Bistability is a robust phenomenon, it occurs over a wide range of parameters of the model. Ca2+ transients that switch CaMKII from the low-phosphorylated state to the high-phosphorylated one are in the same range of amplitudes and frequencies as the Ca2+ transients that induce LTP. These results show that the CaMKII-phosphatase bistability may play an important role in long-term synaptic modifications. They also suggest a plausible explanation for the very high concentrations of CaMKII found in postsynaptic densities of cerebral neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available