4.5 Review

Thermodynamic efficiency of biomass gasification and biofuels conversion

Journal

BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR
Volume 2, Issue 3, Pages 239-253

Publisher

WILEY
DOI: 10.1002/bbb.65

Keywords

gasification; biofuels; exergy; thermodynamic efficiency

Ask authors/readers for more resources

Biomass has great potential as a clean renewable feedstock for producing biofuels such as Fischer-Tropsch biodiesel, methanol, and hydrogen. The use of biomass is accompanied by possible ecological drawbacks, however, such as limitation of land or water and competition with food production. For biomass-based systems a key challenge is thus to develop efficient conversion technologies which can also compete with fossil fuels. The development of efficient technologies for biomass gasification and synthesis of biofuels requires a correct use of thermodynamics. Energy systems are traditionally analyzed by energetic analysis based on the first law of thermodynamics. However, this type of analysis shows only the mass and energy flows and does not take into account how the quality of the energy and material streams degrades through the process. In this review, the exergy analysis, which is based on the second law of thermodynamics, is used to analyze the biomass gasification and conversion of biomass to biofuels. The thermodynamic efficiency of biomass gasification is reviewed for air-blown as well as steam-blown gasifiers. Finally, the overall technological chains biomass-to-biofuels are evaluated, including methanol, Fischer-Tropsch hydrocarbons, and hydrogen. The efficiency of biofuels production is compared with that of fossil fuels. (C) 2008 Society of Chemical Industry and John Wiley & Sons, Ltd

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available