4.6 Article

Two distinct proteins are associated with tetrameric acetylcholinesterase on the cell surface

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 44, Pages 34260-34265

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M004289200

Keywords

-

Funding

  1. NINDS NIH HHS [NS-16577] Funding Source: Medline

Ask authors/readers for more resources

In mammalian brain, acetylcholinesterase (AChE) exists mostly as a tetramer of 70-kDa catalytic subunits that are linked through disulfide bonds to a hydrophobic subunit P of approximately 20 kDa. To characterize P, we reduced the disulfide bonds in purified bovine brain AChE and sequenced tryptic fragments from bands in the 80-kDa region. We obtained sequences belonging to at least two distinct proteins: the P protein and another protein that was not disulfide-linked to catalytic subunits. Both proteins were recognized in Western blots by antisera raised against specific peptides. We cloned cDNA encoding the second protein in a cDNA-library from bovine substantia nigra and obtained rat and human homologs. We call this protein mCutA because of its homology to a bacterial protein (CutA). We could not demonstrate a direct interaction between mCutA and AChE in vitro in transfected cells. However, in a mouse neuroblastoma cell line that produced membrane-bound AChE as an amphiphilic tetramer, the expression of mCutA antisense mRNA eliminated cell surface AChE and decreased the level of amphiphilic tetramer in cell extracts. mCutA therefore appears necessary for the localization of AChE at the cell surface; it may be part of a multicomponent complex that anchors AChE in membranes, together with the hydrophobic P protein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available