4.5 Article

Flow cell hydrodynamics and their effects on E-coli biofilm formation under different nutrient conditions and turbulent flow

Journal

BIOFOULING
Volume 27, Issue 1, Pages 1-11

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/08927014.2010.535206

Keywords

biofilms; Escherichia coli; fluid dynamics; nutrient concentration; turbulent flow

Funding

  1. Portuguese Foundation for Science and Technology [PTDC/BIO/69092/2006]

Ask authors/readers for more resources

Biofilm formation is a major factor in the growth and spread of both desirable and undesirable bacteria as well as in fouling and corrosion. In order to simulate biofilm formation in industrial settings a flow cell system coupled to a recirculating tank was used to study the effect of a high (550 mg glucose l(-1)) and a low (150 mg glucose l(-1)) nutrient concentration on the relative growth of planktonic and attached biofilm cells of Escherichia coli JM109(DE3). Biofilms were obtained under turbulent flow (a Reynolds number of 6000) and the hydrodynamic conditions of the flow cell were simulated by using computational fluid dynamics. Under these conditions, the flow cell was subjected to wall shear stresses of 0.6 Pa and an average flow velocity of 0.4 m s(-1) was reached. The system was validated by studying flow development on the flow cell and the applicability of chemostat model assumptions. Full development of the flow was assessed by analysis of velocity profiles and by monitoring the maximum and average wall shear stresses. The validity of the chemostat model assumptions was performed through residence time analysis and identification of biofilm forming areas. These latter results were obtained through wall shear stress analysis of the system and also by assessment of the free energy of interaction between E. coli and the surfaces. The results show that when the system was fed with a high nutrient concentration, planktonic cell growth was favored. Additionally, the results confirm that biofilms adapt their architecture in order to cope with the hydrodynamic conditions and nutrient availability. These results suggest that until a certain thickness was reached nutrient availability dictated biofilm architecture but when that critical thickness was exceeded mechanical resistance to shear stress (ie biofilm cohesion) became more important.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available