4.5 Article

Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films

Journal

BIOFOULING
Volume 25, Issue 6, Pages 505-516

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/08927010902930363

Keywords

immobilized enzymes; maleic anhydride copolymers; Subtilisin Carlsberg; antifouling; Ulva; Navicula

Funding

  1. AMBIO [NMP4-CT-2005-011827]
  2. sixth Framework Program of Research and Technological Development of the European Community

Ask authors/readers for more resources

The proteinaceous nature of the adhesives used by most fouling organisms to attach to surfaces suggests that coatings incorporating proteolytic enzymes may provide a technology for the control of biofouling. In the present article, the antifouling (AF) and fouling release potential of model coatings incorporating the surface-immobilized protease, Subtilisin A, have been investigated. The enzyme was covalently attached to maleic anhydride copolymer thin films; the characteristics of the bioactive coatings obtained were adjusted through variation of the type of copolymer and the concentration of the enzyme solution used for immobilization. The bioactive coatings were tested for their effect on the settlement and adhesion strength of two major fouling species: the green alga Ulva linza and the diatom Navicula perminuta. The results show that the immobilized enzyme effectively reduced the settlement and adhesion strength of zoospores of Ulva and the adhesion strength of Navicula cells. The AF efficacy of the bioactive coatings increased with increasing enzyme surface concentration and activity, and was found to be superior to the equivalent amount of enzyme in solution. The results provide a rigorous analysis of one approach to the use of immobilized proteases to reduce the adhesion of marine fouling organisms and are of interest to those investigating enzyme-containing coating technologies for practical biofouling control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available