4.6 Article

Critical role of Smads and AP-1 complex in transforming growth factor-β-dependent apoptosis

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 46, Pages 36295-36302

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M006023200

Keywords

-

Ask authors/readers for more resources

Transforming growth factor-beta1 (TGF-beta1) induces not only cell growth inhibition but also apoptosis in hepatocytes, myeloid cells, and epithelial cells. Although Smad proteins are identified as key signal transducers in TGF-beta1 dependent growth inhibition, their roles in the induction of apoptosis are unclear. We show here that both Smad proteins and AP-1 complex are involved in TGF-beta1 signaling for apoptosis. Overexpression of a dominant-negative Smad3 mutant or Smad7, both of which impair Smad-mediated signal transduction, inhibits TGF-beta1-dependent apoptosis. Only the JunD-FosB form of the AP-1 complex is markedly activated during TGF-beta1-dependent apoptosis, FosB substantially enhances Smad3.Smad4-dependent transcription, and dominant-negative FosB blocks TGF-beta1-dependent apoptosis but not growth inhibition. Expression of JunD.FosB enhances induction of apoptosis by TGF-beta1. Moreover, JunD.FosB binds to the 12-O-tetradecanoyl-13-acetate-responsive gene promoter element and recruits Smad3.Smad4 to form a multicomponent complex. These results suggest that Smad proteins and AP-1 complex synergize to mediate TGF-beta1-dependent apoptosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available