4.6 Article

Up-regulation of the IKCa1 potassium channel during T-cell activation -: Molecular mechanism and functional consequences

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 47, Pages 37137-37149

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M003941200

Keywords

-

Funding

  1. NIGMS NIH HHS [GM54221] Funding Source: Medline
  2. NINDS NIH HHS [NS14609] Funding Source: Medline

Ask authors/readers for more resources

We used whole cell recording to evaluate functional expression of the intermediate conductance Ca2+-activated KC channel, IKCa1, in response to various mitogenic stimuli. One to two days following engagement of T-cell receptors to trigger both PKC- and Ca2+-dependent events, IKCa1 expression increased from an average of 8 to 300-800 channels/cell. Selective stimulation of the PKC pathway resulted in equivalent up-regulation, whereas a calcium ionophore was relatively ineffective. Enhancement in IKCa1 mRNA levels paralleled the increased channel number. The genomic organization of IKCa1, SKCa2, and SRCa3 were defined, and IKCa and SKCa genes were found to have a remarkably similar intron-exon structure, Mitogens enhanced IKCa1 promoter activity proportional to the increase in IKCa1 mRNA suggesting that transcriptional mechanisms underlie channel up-regulation. Mutation of motifs for AP1 and Ikaros-2 in the promoter abolished this induction. Selective Kv1.3 inhibitors ShK-Dap(22), margatoxin, and correolide suppressed mitogenesis of resting T-cells but not preactivated T-cells with up-regulated IKCa1 channel expression. Selectively blocking IKCa1 channels with clotrimazole or TRAM-34 suppressed mitogenesis of preactivated lymphocytes, whereas resting T-cells were less sensitive. Thus, Kv1.3 channels are essential for activation of quiescent cells, but signaling through the PKC pathway enhances expression of IKCa1 channels that are required for continued proliferation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available