4.4 Article

Pausing for thought: Disrupting the early transcription elongation checkpoint leads to developmental defects and tumourigenesis

Journal

BIOESSAYS
Volume 35, Issue 6, Pages 553-560

Publisher

WILEY
DOI: 10.1002/bies.201200179

Keywords

DSIF; NELF; promoter proximal pausing; P-TEFb; Spt5; transcription elongation

Funding

  1. UK Medical Research Council (MRC)
  2. Wellcome Trust
  3. Medical Research Council [G0800310] Funding Source: researchfish
  4. MRC [G0800310] Funding Source: UKRI

Ask authors/readers for more resources

Factors affecting transcriptional elongation have been characterized extensively in in vitro, single cell (yeast) and cell culture systems; however, data from the context of multicellular organisms has been relatively scarce. While studies in homogeneous cell populations have been highly informative about the underlying molecular mechanisms and prevalence of polymerase pausing, they do not reveal the biological impact of perturbing this regulation in an animal. The core components regulating pausing are expressed in all animal cells and are recruited to the majority of genes, however, disrupting their function often results in discrete phenotypic effects. Mutations in genes encoding key regulators of transcriptional pausing have been recovered from several genetic screens for specific phenotypes or interactions with specific factors in mice, zebrafish and flies. Analysis of these mutations has revealed that control of transcriptional pausing is critical for a diverse range of biological pathways essential for animal development and survival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available