4.6 Article

Limb-girdle muscular dystrophy (LGMD-1C) mutants of caveolin-3 undergo ubiquitination and proteasomal degradation -: Treatment with proteasomal inhibitors blocks the dominant negative effect of LGMD-1C mutants and rescues wild-type caveolin-3

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 48, Pages 37702-37711

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M006657200

Keywords

-

Funding

  1. Telethon [1111] Funding Source: Medline

Ask authors/readers for more resources

Caveolin-3 is the principal structural protein of caveolae in striated muscle. Autosomal dominant limb-girdle muscular dystrophy (LGMD-1C) in humans is due to mutations (Delta TFT and Pro --> Leu) within the CAV3 gene. We have shown that LGMD-1C mutations lead to formation of unstable aggregates of caveolin-3 that are retained intracellularly and are rapidly degraded. The mechanism by which LGMD-1C mutants of caveolin-3 are degraded remains unknown. Here, we show that LGMD-1C mutants of caveolin-3 undergo ubiquitination-proteasomal degradation. Treatment with proteasomal inhibitors (MG-132, MG-115, lactacystin, or proteasome inhibitor I), but not lysosomal inhibitors, prevented degradation of LGMD-1C caveolin-3 mutants. In the presence of MG-132, LGMD-1C caveolin-3 mutants accumulated within the endoplasmic reticulum and did not reach the plasma membrane. LGMD-1C mutants of caveolin-3 behave in a dominant negative fashion, causing intracellular retention and degradation of wild-type caveolin-3, Interestingly, in cells co-expressing wildtype and mutant forms of caveolin-3, MG-132 treatment rescued wild-type caveolin-3; wild-type caveolin-3 was not degraded and reached the plasma membrane. These results may have clinical implications for treatment of patients with LGMD-1C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available