4.7 Article

Separation, characterization and hydrogel-formation of hemicellulose from aspen wood

Journal

CARBOHYDRATE POLYMERS
Volume 43, Issue 4, Pages 367-374

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0144-8617(00)00181-8

Keywords

hemicellulose; chitosan; xylan

Ask authors/readers for more resources

Hemicellulose from aspen (Populus tremula) was isolated by an alkali extraction method, which was followed by hydrogen peroxide treatment, ultrafiltration and recovery by spray drying. The sugar composition and lignin content were monitored with HPLC at each step of the separation procedure. Size-exclusion chromatography showed a polymeric hemicellulose of relatively high molar mass. The product was characterized by H-1 and C-13 NMR spectroscopy and was found to be composed of a linear (1 --> 4)-beta-linked D-xylose main chain with a 4-O-methyl-alpha-D-glucuronic acid substituting the 2-position of approximately every eighth xylose unit. Lignin and O-acetyl groups had largely been removed in the separation process. The xylan was soluble in hot water, and the film forming properties were examined at various mixtures of the hemicellulose and chitosan. These films formed hydrogels with a high swelling capacity at certain compositions. The morphologies of the films were examined with wide angle X-ray spectroscopy, and a pure xylan film was found to be crystalline, which was suggested to be a consequence of the lack of O-acetyl groups. The crystallinity of the films was found to decrease with an increasing amount of chitosan, and the film of chitosan alone showed no crystallinity. The cohesive forces of the hydrogels are suggested to be the result of the crystalline arrangement of the polymers and of electrostatic interactions between acidic groups in the hemicellulose and amine groups in the chitosan. (C) 2000 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available