4.6 Article

Gender-related differences in proliferative response of cardiac fibroblasts to hypoxia: Effects of estrogen

Journal

MOLECULAR AND CELLULAR BIOCHEMISTRY
Volume 215, Issue 1-2, Pages 21-30

Publisher

SPRINGER
DOI: 10.1023/A:1026585420021

Keywords

gender; ischemia; estrogen; ventricular remodeling; heart failure

Categories

Funding

  1. NHLBI NIH HHS [R01-HL-42666] Funding Source: Medline

Ask authors/readers for more resources

Ischemic heart disease is more prevalent in men than in women. The remodeling of extracellular matrix, is a structural correlate of heart failure of ischemic origin and proliferation of cardiac fibroblasts is a key factor in this remodeling. We asked if proliferative response of male and female cardiac fibroblasts is differentially susceptible to hypoxia. DNA synthesis, using H-3-thymidine incorporation was compared under hypoxia (2% O-2) in cardiac fibroblasts obtained from adult, age-matched male and female rat heart. In female cells DNA synthesis remained unchanged under hypoxia and this resistance was dependent on tyrosine kinase activation, as it was abolished in the presence of genistein, a tyrosine kinase inhibitor. Male cells, on the other hand, were susceptible to hypoxia and their DNA synthesis was reduced significantly (70%, (p < 0.0001). This effect was partially reversed by inhibition of tyrosine kinase. Western analysis showed a higher abundance of tyrosine phosphorylated proteins in male cells compared to female cells as well as differences in molecular weight of basal and hypoxia-induced tyrosine-phosphorylated proteins between male and female cells. The presence of estrogen (17-beta estradiol, 10 nM) altered the response of both cells to hypoxia. In female cells the combined effect of hypoxia and estrogen led to inhibition of DNA synthesis, whereas in male cells estrogen partially reversed the hypoxia-induced inhibition of DNA synthesis (37% (p < 0.01) inhibition in the presence of estrogen vs. 70% (p < 0.0001) inhibition in the absence of estrogen). The effects of estrogen in male and female cells were mediated via estrogen receptors as they were reversed by the pure anti-estrogen, ICI 182,780. Western analysis of cell lysate showed hypoxia-induced increase in the level of estrogen receptor beta in both male and female cells. Gel shift analysis showed hypoxia-induced increase in cytoplasmic ERE (estrogen response element)-binding activity and decrease in nuclear ERE-binding in male cells. In female cells cytoplasmic and nuclear ERE-binding activities remained unchanged under hypoxia. Together, these data demonstrate that while female cells are resistant to hypoxia-induced inhibition in DNA synthesis, male cells are susceptible; intracellular pathways involving tyrosine phosphorylation are involved in the response of both cells; and estrogen, via estrogen-receptor-dependent mechanisms, differentially alters the response of male and female cells to hypoxia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available