4.2 Article

Effects of 100 GHz Radiation on Alkaline Phosphatase Activity and Antigen-Antibody Interaction

Journal

BIOELECTROMAGNETICS
Volume 30, Issue 3, Pages 167-175

Publisher

WILEY
DOI: 10.1002/bem.20466

Keywords

THz radiation; enzyme activity; enzyme-substrate

Funding

  1. Commission of the European Communities
  2. specific RTD program Quality of Life and Management of Living of Resources [QLK4-2000-00129]
  3. Department of Chemical Engineering and Biotechnology, internal research award

Ask authors/readers for more resources

Equipment that generates microwave radiation (MWR) spanning the frequency range of 300 MHz-100 GHz is becoming more common. While MWR lacks sufficient energy to break chemical bonds, the disagreement as to whether MWR exposure is detrimental to cellular dysfunction may be difficult to clarify using complex systems such as whole animals, cells, or cell extracts. Recently, the high frequency range of terahertz (THz) radiation has been explored and sources of radiation and its detectors have been developed. THz radiation is associated with the frequency interval from 100 GHz to 20 THz and constitutes the next frontier in imaging science and technology. In the present Study, we investigated the effect of radiation in the low frequency THz range (100 GHz) on two defined molecular interactions. First, the interaction of soluble or immobilized calf alkaline phosphatase with the substrate p-nitrophenyl phosphate and second, the interaction between an antibody (mouse monoclonal anti-DNP) and its antigen (DNP). Irradiation of enzyme either prior to addition of substrate or during the enzymatic reaction resulted in small but significant reductions in enzyme activity. These differences were not observed if the enzyme had previously been immobilized onto plastic microwells. Exposure of immobilized antigen to radiation did not influence the ability of the antigen to interact with antibody. However, irradiation appeared to decrease the stability of previously formed antigen-antibody complexes. Our data suggest that 100 GHz radiation can induce small but statistically significant alterations in the characteristics of these two types of biomolecular interactions. Bioelectromagnetics 30:167-175, 2009. (c) 2008 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available