4.4 Article

Optimal swimming speeds and forward-assisted propulsion: energy-conserving behaviours of upriver-migrating adult salmon

Journal

CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES
Volume 57, Issue 12, Pages 2470-2478

Publisher

NATL RESEARCH COUNCIL CANADA
DOI: 10.1139/cjfas-57-12-2470

Keywords

-

Ask authors/readers for more resources

Anadromous salmon migrations are energetically expensive. Long-distance migrants should be efficient in their use of energy and minimize swimming costs wherever possible. We explore swimming strategies and energy-saving tactics employed by three long-distance-migrating sockeye salmon (Oncorhynchus nerka) stocks in the Fraser River watershed, British Columbia. We used stereovideography and bank-side observations to estimate swimming speeds (from tailbeat frequency) and ground speeds (using distance traveled and duration) for individuals at several sites. Salmon were highly efficient at migration (i.e., ground speeds equaled or exceeded swimming speeds) through reaches with relatively low encountered currents (<0.25 m.s(-1)). We speculate that salmon exploit small reverse-flow vortices to achieve this feat. With low encountered currents, most salmon migrated according to an optimal swimming speed model: migrants minimized transport costs per unit distance traveled. Generally, salmon were less efficient at migration with fast currents, although the Chilko stock were superoptimal migrants, possibly owing to unique morphology and (or) behaviours. The risk of significant delays is enhanced when fast currents are encountered. Under these conditions, relatively fast swimming speeds could minimize travel time, despite high costs. Migrants may be balancing energetic costs of migration against the fitness costs of spawning delays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available