4.7 Article

Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: Scanning electron and atomic force microscopy study

Journal

POULTRY SCIENCE
Volume 79, Issue 12, Pages 1839-1845

Publisher

POULTRY SCIENCE ASSOC INC
DOI: 10.1093/ps/79.12.1839

Keywords

biofilm; bacteria; pathogen; poultry processing; stainless steel

Ask authors/readers for more resources

Three common finishing treatments of stainless steel that are used for equipment during poultry processing were tested for resistance to bacterial contamination. Methods were developed to measure attached bacteria and to identify factors that make surface finishes susceptible or resistant to bacterial attachment and biofilm formation. Samples of the treated surfaces (sand-blasted, sanded, and electropolished) were exposed to natural bacterial populations from chicken carcass rinses to allow growth of bacteria and development of biofilms on the surfaces. The kinetics of bacterial growth during surface exposure was followed by UV-visible spectrophotometry, and counts of bacteria and early biofilm formation were measured following scanning electron microscopy (SEM). The surface morphology of the samples was analyzed by atomic force microscopy (AFM) with samples from each of the batches of treatments used in the SEM studies. Relative differences in the surface morphology, including fractal dimensions, Z ranges, roughness, and other measurements corresponded by treatment with the differences in reduction of bacterial counts shown by SEM. The surface types varied in affinity for bacteria, and both physical and electrochemical treatments improved resistance of stainless steel to bacterial attachment. Electropolished stainless steel was the least rough surface and showed significantly fewer bacterial cells and beginning biofilm formations than the other treated surfaces. Food safety could be improved if bacterial populations could be reduced during processing by increasing the use of materials that are resistant to bacterial contamination. These findings will aid equipment manufacturers and processors in selecting materials and finishes that are most resistant to bacteria and biofilm formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available