3.9 Article

Internal support of tissue-engineered cartilage

Journal

ARCHIVES OF OTOLARYNGOLOGY-HEAD & NECK SURGERY
Volume 126, Issue 12, Pages 1448-1452

Publisher

AMER MEDICAL ASSOC
DOI: 10.1001/archotol.126.12.1448

Keywords

-

Ask authors/readers for more resources

Background: Auricles previously created by tissue engineering in nude mice used a biodegradable internal scaffold to maintain the desired shape of an ear. However, the biodegradable scaffold incited a compromising inflammatory response in subsequent experiments in immunocompetent animals. Objective: To test the hypothesis that tissue-engineered autologous cartilage can be bioincorporated with a nonreactive, permanent endoskeletal scaffold. Materials and Methods: Auricular elastic cartilage was harvested from Yorkshire swine. The chondrocytes were isolated and suspended into a hydrogel (Pluronic F-127) at a cell concentration of 5 x 10(7) cells/mL. Nonbiodegradable endoskeletal scaffolds were formed with 1 of 5 polymers: (1) high-density polyethylene, (2) soft acrylic, (3) polymethylmethaclylate, (4) extrapurified Silastic, and (5) conventional Silastic. Three groups were studied: (1) a control group using only the 5 polymers, (2) the 5 polymers enveloped by Pluronic F-127 only, and (3) the implants coated with Pluronic F-127 seeded with chondrocytes. All constructs were implanted subdermally; implants containing cells were implanted into the same animal from which the cells had been islolated. The implants were harvested after 8 weeks of in vivo culture and histologically analyzed. Results: Only implants coated by hydrogel plus cells generated healthy new cartilage. With 3 polymers (high-density polyethylene, acrylic, and extrapurified Silastic), the coverage was nearly complete by elastic cartilage, with minimal fibrocartilage and minimal to no inflammatory reaction. The Food and Drug Administration-approved conventional Silastic implants resulted in fragments of fibrous tissue mixed with elastic cartilage plus evidence of chronic inflammation. The polymethylmethacrylate implant was intermediate in the amount of cartilage formed and degree of inflammation. Conclusions: This pilot technique combining tissue-engineered autologous elastic cartilage with a permanent biocompatible endoskeleton demonstrated success in limiting the inflammatory response to the scaffold, especially to high-density polyethylene, acrylic, and extrapurified Silastic. This model facilitates the potential to generate tissue of intricate shape, such as the human ear, by internal support.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available