4.4 Article

Computational modeling of SiC epitaxial growth in a hot wall reactor

Journal

JOURNAL OF CRYSTAL GROWTH
Volume 220, Issue 4, Pages 560-571

Publisher

ELSEVIER
DOI: 10.1016/S0022-0248(00)00843-5

Keywords

CVD; SiC; model

Ask authors/readers for more resources

A computational model for chemical vapor deposition (CVD) of silicon carbide (SiC) in a hot-wall reactor is developed, where the susceptor is tapered with a rectangular cross-section. The present work focuses on the advection-diffusion-reaction process in the susceptor. The precursors are propane and silane, and the carrier gas is hydrogen with mass fraction higher than 99%. Computed growth rates under different system pressures and precursor concentrations are compared to the experimental data measured on samples grown in the Linkoping CVD reactor. The gas composition distribution in the susceptor and the growth rate profile on the susceptor floor are shown and analyzed. Dependence of the growth rate on precursor concentrations is investigated. It is demonstrated that the growth rate of SiC may either be carbon transport limited or silicon controlled, depending on the input carbon-to-silicon ratio. (C) 2000 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available