4.8 Article

In vitro selection of signaling aptamers

Journal

NATURE BIOTECHNOLOGY
Volume 18, Issue 12, Pages 1293-1297

Publisher

NATURE AMERICA INC
DOI: 10.1038/82414

Keywords

aptamer; biosensor; in vitro selection; SELEX; diagnostics

Ask authors/readers for more resources

Reagentless biosensors that can directly transduce molecular recognition to optical signals should potentiate the development of sensor arrays for a wide variety of analytes. Nucleic acid aptamers that bind ligands tightly and specifically can be readily selected, but may prove difficult to adapt to biosensor applications. We have therefore attempted to develop selection methods that couple the broad molecular recognition properties of aptamers with signal transduction. Anti-adenosine aptamers were selected from a pool that was skewed to contain very few fluoresceinated uridines. The primary family of aptamers showed a doubling of relative fluorescence intensity at saturating concentrations of a cognate analyte, ATP, and could sense ATP concentrations as low as 25 muM. A single uridine was present in the best signaling aptamer. Surprisingly, other dyes could substitute for fluorescein and still specifically signal the presence of ATP, indicating that the single uridine functioned as a general switch for transducing molecular recognition to optical signals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available