4.5 Article

Lipid peroxidation and scavenging enzyme activity in streptozotocin-induced diabetes

Journal

ACTA DIABETOLOGICA
Volume 37, Issue 4, Pages 179-183

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s005920070002

Keywords

pregnancy; hyperglycaemia; oxidative stress; lipid peroxidation; vitamin E

Ask authors/readers for more resources

The aim of this study was to evaluate lipid peroxidation and scavenging enzyme activity in streptozotocin-induced diabetes, and then to establish whether moderate doses of nonenzymatic antioxidant vitamin E play a role in the antioxidant defence system in diabetic pregnant rats and their offspring. The study group consisted of 30 normal female Wistar rats, which were given a single dose of streptozotocin (40 mg/kg) and were mated 7 days later. Subsequently, the diabetic animals were divided into two matched groups: the first supplemented with vitamin E (30 mg/100 g chow), and the other fed with a standard diet lacking vitamin E. Controls consisted of 15 pregnant rats. On the first day after delivery, the rats were decapitated and homogenates of maternal liver and uterus as well as neonatal lungs and liver were prepared. Then the following parameters were measured: malondialdehyde (MDA) concentrations in the homogenates and blood serum, glutathione (GSH) levels, the activity of CuZn-superoxide dismutase (SOD) and glutathione peroxidase (GPx), and glycaemia. The neonates of diabetic rats were smaller than the healthy ones and serum glucose concentration was markedly higher in the diabetic animals. MDA levels were significantly increased, whereas GSH, SOD and GPx were markedly diminished in the diabetic adult rats and their offspring in comparison to the control group. In the animals supplemented with a-tocopherol, MDA concentrations were significantly lower, GSH content and SOD activities were markedly elevated most tissues studied, whereas GPx remained unchanged. We conclude that, by monitoring the activity of selected scavenging enzymes, information on ongoing biological oxidative stress and thereby on the fetus/neonate status may be obtained. Our results suggest that diabetic pregnant rats and their neonates are exposed to an increased oxidative stress and that vitamin E supplementation may reduce its detrimental effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available