4.7 Article

Great advantages in using a natural rubber instead of a synthetic SBR in a pro-oxidant system for degradable LDPE

Journal

BIOMACROMOLECULES
Volume 1, Issue 4, Pages 665-673

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm000050w

Keywords

-

Ask authors/readers for more resources

Different pro-oxidant systems are used in degradable low-density polyethylene (LDPE). The main question is the degradation products and not the degradation time from the used materials. The pro-oxidant formulation used consisted of manganese stearate and natural rubber (NR) or manganese stearate and a synthetic, styrene-butadiene copolymer rubber (SBR). The samples were heated in air at 100 degreesC in sealed glass vials. The molecular weight changes were measured by size exclusion chromatography (SEC). The volatile and nonvolatile degradation products have been identified by gas chromatography-mass spectrometry (GC/MS). A wide variety of degradation products were identified, including ketones, carboxylic acids, keto acids, dicarboxylic acids, and furanones as a homologous series. Benzaldehyde, acetophenone, benzoic acid, benzyl benzoate, and two benzene derivative compounds were identified only in the LDPE-SBR system. These aromatic compounds originate from the styrene parr of SBR. The advantages using pro-oxidant containing NR are more effective degradation of LDPE without any aromatic degradation products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available