4.6 Article

Relationships between the diversity patterns of vascular plants, lichens and invertebrates in the Central Asian forest-steppe ecotone

Journal

BIODIVERSITY AND CONSERVATION
Volume 23, Issue 5, Pages 1105-1117

Publisher

SPRINGER
DOI: 10.1007/s10531-014-0648-z

Keywords

Vascular plants; Epiphytic lichens; Soil macroarthropods; Oribatid mites; Moths; Disturbance gradient

Funding

  1. Volkswagen Foundation

Ask authors/readers for more resources

The Central Asian forest-steppe ecotone has been exposed to large alterations in grazing pressure in the last two decades, but the consequences for biodiversity have not been studied so far. We analyzed the biodiversity of the edges and the interior of Siberian larch forests in the forest-steppes of eastern Kazakhstan (Saur, Kazakh Altai) and western Mongolia (Mongolian Altai, Khangai) across different groups of organisms (vascular plants, epiphytic lichens, soil macroarthropods, oribatid mites, moths). The species richness of these groups was related to each other only at the forest edge, but not in the interior. Species richness of vascular plants, soil macroarthropods and oribatid mites at the forest edges was positively correlated. This indicates that these ground-inhabiting groups of organisms responded similarly to the variation in the grazing pressure of livestock, which is kept at spatially varying densities by mostly nomadic or transhumant herders. The species richness of epiphytic lichens was only positively correlated with that of vascular plants, and the richness of the (volant) moths was not correlated with that of any other group. The complete lack of correlation between the diversity of groups of organisms in the forest interior suggests that the diversity of the five studied groups is controlled by specific environmental factors, including light and moisture. Except for the Mongolian Altai, which was subjected to the highest grazing pressure, vascular plants, lichens, soil macroarthropods, and moths had a higher diversity at the edges than in the interior; the opposite was true for the oribatid mites. The latter probably benefit from the higher soil moisture inside the forest, whereas the other four groups are favored by increased availability of light, the proximity to the steppe with a partial mixing of species pools, and the soil macroarthropods also by increased dung abundance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available