4.7 Review

The Mitochondrial Thioredoxin System

Journal

ANTIOXIDANTS & REDOX SIGNALING
Volume 2, Issue 4, Pages 801-U195

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2000.2.4-801

Keywords

-

Funding

  1. Swedish Medical Research Council [13X10370]
  2. Karolinska Institutet
  3. Angstromke Winbergs Stiftelse
  4. TMR Marie Curie Research Training [ERBFMBICT972824]
  5. Spanish Ministerio de Educacion y Cultura
  6. Sodertorns Hogskola

Ask authors/readers for more resources

Eukaryotic organisms from yeast to human possess a mitochondrial thioredoxin system composed of and thioredoxin reductase, similar to the cytosolic thioredoxin system that exists in the same cells. Yeast and mammalian mitochondrial thioredoxins are monomers of approximately 12 kDa and contain the typical conserved active site WCGPC. However, there are important differences between yeast and mammalian mitochondrial thioredoxin reductases that resemble the differences between their cytosolic counterparts. Mammalian mitochondrial thioredoxin reductase is a selenoprotein that forms a homodimer of 55 kDa/subunit; while yeast mitochondrial thioredoxin reductase is a homodimer of 37 kDa/subunit and does not contain selenocysteine. A function of the mitochondrial thioredoxin system is as electron donor for a mitochondrial peroxiredoxin, an enzyme that detoxifies the hydrogen peroxide generated by the mitochondrial metabolism. Experiments with yeast mutants lacking both the mitochondrial thioredoxin system as well as the mitochondrial peroxiredoxin system suggest an important role for mitochondrial thioredoxin, thioredoxin reductase, and peroxiredoxin in the protection against oxidative stress. Antiox. Redox Signal. 2, 801-810.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available