4.5 Article

Experimental investigations of the soil-water characteristics of a volcanic soil

Journal

CANADIAN GEOTECHNICAL JOURNAL
Volume 37, Issue 6, Pages 1252-1264

Publisher

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/t00-056

Keywords

volcanic soil; SWCC; drying and wetting; stress-state dependent

Ask authors/readers for more resources

Rain-induced landslides are common around the world. To analyse transient seepage and to predict pore-water pressure distribution in unsaturated slopes subjected to rainfall infiltration, it is essential to study soil-water characteristics and water permeability functions. The soil-water characteristic curve (SWCC) is a relationship between suction and water content or degree of saturation. Conventionally, only the drying soil-water characteristic curve of soil specimens is determined in a pressure-plate extractor without the application of any external stress. In this paper, the influences of initial dry density and initial water content, history of drying and wetting, soil structure, and the stress state upon the desorption and adsorption soil-water characteristics of a completely decomposed volcanic soil in Hong Kong are examined and discussed. The experimental results presented are obtained by using a conventional volumetric pressure-plate extractor and a newly modified one-dimensional stress-controllable pressure-plate extractor with deformation measurements. The SWCC of a recompacted specimen is very different from that of a natural specimen with the same initial soil density and initial water content. The SWCC of the recompacted specimen is highly dependent on the history of drying and wetting. The rates of desorption and adsorption are substantially higher at the first drying and wetting cycle than at the second drying and wetting cycle. The size of the hysteresis loop of the recompacted specimen is considerably larger than that of the natural specimens. The SWCC of soil is stress-state dependent. For recompacted specimens subjected to different stress states, the higher the applied stresses, the lower the rate of desorption and the smaller the size of the hysteresis loops. However, for natural specimens, the size of the hysteresis loops seems to be independent of the stress state. Under a higher applied stress, natural specimens exhibit lower rates of desorption and adsorption.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available