4.4 Article

Removal of the sesquiterpene β-caryophyllene from air via biofiltration: performance assessment and microbial community structure

Journal

BIODEGRADATION
Volume 24, Issue 5, Pages 685-698

Publisher

SPRINGER
DOI: 10.1007/s10532-012-9616-z

Keywords

Biofilter; Biofiltration; beta-Caryophyllene; Community structure; Conifer; Lumber; Gordonia; Pinene; Sesquiterpene; Shut down; Terpene; Wood

Funding

  1. Governor's Biotechnology Initiative of the Louisiana Board of Regents Enhancement of the LSU Hazardous Substance Research Center Environmental Biotechnology Initiative [15]

Ask authors/readers for more resources

Experiments were conducted in a laboratory-scale biofilter to assess the ability of a fixed-film biological process to treat an air stream containing beta-caryophyllene, a sesquiterpene emitted by a variety of conifer trees as well as industrial wood processing operations. Treatment performance was evaluated under a variety of pollutant loading conditions and nutrient supply rates over an operational period lasting more than 240 days. At empty bed contact times (EBCTs) as low as 10 s and daily average pollutant loading rate as high as 24.2 g C/(m(3) h) (grams pollutant measured as carbon per cubic meter packed bed volume per hour), removal efficiencies in excess of 95 % were observed when sufficient nutrients were supplied. Results demonstrate that, as with biofilters treating other compounds, biofilters treating beta-caryophyllene can experience local nutrient limitations that result in diminished performance. The biofilter successfully recovered high removal efficiency within a few days after resumption of pollutant loading following a 14-day interval of no contaminant loading. Construction of a 16S rRNA gene library via pyrosequencing revealed the presence of a high proportion of bacteria clustering within the genera Gordonia (39.7 % of the library) and Rhodanobacter (37.6 %). Other phylotypes detected at lower relative abundances included Pandoraea (6.2 %), unclassified Acetobacteraceae (5.5 %), Dyella (3.3 %), unclassified Xanthomonadaceae (2.6 %), Mycobacterium (1.8 %), and Nocardia (0.6 %). Collectively, results demonstrate that beta-caryophyllene can be effectively removed from contaminated gas streams using biofilters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available