4.4 Article

Biodegradation of polyfluorinated biphenyl in bacteria

Journal

BIODEGRADATION
Volume 22, Issue 4, Pages 741-749

Publisher

SPRINGER
DOI: 10.1007/s10532-010-9411-7

Keywords

PCB; Fluorometabolites; NMR; Mass spectrometry

Funding

  1. Enterprise Ireland

Ask authors/readers for more resources

Fluorinated aromatic compounds are significant environmental pollutants, and microorganisms play important roles in their biodegradation. The effect of fluorine substitution on the transformation of fluorobiphenyl in two bacteria was investigated. Pseudomonas pseudoalcaligenes KF707 and Burkholderia xenovorans LB400 used 2,3,4,5,6-pentafluorobiphenyl and 4,4'-difluorobiphenyl as sole sources of carbon and energy. The catabolism of the fluorinated compounds was examined by gas chromatography-mass spectrometry and fluorine-19 nuclear magnetic resonance spectroscopy ((19)F NMR), and revealed that the bacteria employed the upper pathway of biphenyl catabolism to degrade these xenobiotics. The novel fluorometabolites 3-pentafluorophenyl-cyclohexa-3,5-diene-1,2-diol and 3-pentafluorophenyl-benzene-1,2-diol were detected in the supernatants of biphenyl-grown resting cells incubated with 2,3,4,5,6-pentafluorobiphenyl, most likely as a consequence of the actions of BphA and BphB. 4-Fluorobenzoate was detected in cultures incubated with 4,4'-difluorobiphenyl and (19)F NMR analysis of the supernatant from P. pseudoalcaligenes KF707 revealed the presence of additional water-soluble fluorometabolites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available