4.6 Article

Pest control by the introduction of a conditional lethal trait on multiple loci: Potential, limitations, and optimal strategies

Journal

JOURNAL OF ECONOMIC ENTOMOLOGY
Volume 93, Issue 6, Pages 1543-1565

Publisher

ENTOMOL SOC AMER
DOI: 10.1603/0022-0493-93.6.1543

Keywords

conditional lethal; genetic control; multilocus; sterile male; model

Categories

Ask authors/readers for more resources

Advances in genetics have made it feasible to genetically engineer insect strains carrying a conditional lethal trait on multiple loci. We model the release into a target pest population of insects carrying a dominant and fully penetrant conditional lethal trait on 1-20 loci. Delaying the lethality for several generations after release allows the trait to become widely spread in the target population before being activated. To determine effectiveness and optimal strategies for such releases, we vary release size, number of generations until the conditional lethality, nonconditional fitness cost resulting from gene insertions, and fitness reduction associated with laboratory rearing. We show that conditional lethal releases are potentially orders of magnitude more effective than sterile male releases of equal size, and that far smaller release sizes may be required for this approach than necessary with sterile males. For example, a release of male insects carrying a conditional lethal allele that is activated in the F-4 generation on 10 loci reduces the target population to 10(-4) of no-release size if there are initially two released males for every wild male. We show how the effectiveness of conditional lethal releases decreases as the nonconditional fitness reduction (i.e., fitness reduction before the trait becomes lethal) associated with the conditional lethal genes increases. For example, if there is a 5% nonconditional fitness cost per conditional lethal allele, then a 2:1 (released male:wild male) release with conditional lethal alleles that are activated in the F-4 generation reduces the population to 2-5% ( depending on the degree of density dependence) of the no-release size. If there is a per-allele reduction in fitness, then as the number of loci is increased there is a trade-off between the fraction of offspring carrying at least one conditional lethal allele and the fitness of the released insects. We calculate the optimal number of loci on which to insert the conditional lethal gene given various conditions. In addition, we show how laboratory-rearing fitness costs, density-dependence, and all-male versus male-female releases affect the efficiency of conditional lethal releases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available