4.6 Article

Epigenetic and genotype-specific effects on the stability of de Novo imposed methylation patterns in transgenic mice

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 48, Pages 37915-37921

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M004839200

Keywords

-

Ask authors/readers for more resources

The chloramphenicol acetyltransferase gene under the control of the late E2A promoter of adenovirus type 2 (Ad2) was introduced as transgene into the B6D2F1 mouse strain with mixed genetic background and became extensively de novo methylated. The methylation of this pAd2E2AL-CAT (7-1A) transgene was regulated in a strain-specific manner apparently depending on the site of integration. Transmission of the 7-1A transgene into an inbred DBA/2, 129/sv, or FVB/N genetic background led to a significant loss of methylation in the transgene, whereas C57BL/6, CB20, and Balb/c backgrounds favored the de novo methylation in very specific patterns. The newly established patterns of de novo methylation were transmitted to the offspring and remained stable for many generations, regardless of the heterozygosity of strain-specific DNA sequences present in these mouse strains. Segregation analyses showed a non-mendelian transmission of methylation phenotypes and suggested the involvement of dominant modifiers of methylation. The genotype-specific modifications of the transgene were followed for 11 backcross generations. These observations reflect an evolutionarily conserved mechanism directed against foreign, e.g. viral or bacterial, DNA at least in the chromosomal location of the 7-1A transgene, In seven additional mouse lines carrying the same transgene in different chromosomal locations, strain-specific alterations of methylation patterns were not observed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available