4.6 Article

Polyunsaturated (n-3) fatty acids susceptible to peroxidation are increased in plasma and tissue lipids of rats fed docosahexaenoic acid-containing oils

Journal

JOURNAL OF NUTRITION
Volume 130, Issue 12, Pages 3028-3033

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1093/jn/130.12.3028

Keywords

chemiluminescence; fish oil; lipid peroxidation; phospholipid hydroperoxide

Ask authors/readers for more resources

Docosahexaenoic acid [DHA, 22:6(n-3)], a major component of membrane phospholipids in brain and retina, is profoundly susceptible to oxidative stress in vitro. The extent of this peroxidation in organs when DHA is ingested in mammals, however, is not well elucidated. We investigated the effect of dietary DHA-containing oils (DHA 7.0-7.1 mol/100 mol total fatty acids), in the form of triacylglycerols (TG), ethyl esters (EE) and phospholipids (PL), on tissue lipid metabolism and lipid peroxidation in rats. Groups of Sprague-Dawley rats were fed semipurified diets containing 15 g/100 g test oils and were compared with those fed 80% palm oil and 20% soybean oil as the control (unsupplemented group) for 3 wk. The DHA oil diets markedly increased (P < 0.05) the levels of DHA in the plasma, liver and kidney, 1.5-1.9, 2.5-3.8 and 2.2-2.5 times the control values, respectively, whereas there was a concomitant reduction (P < 0.05) in arachidonic acid. All forms of DHA oil caused lower TG concentrations in plasma (P < 0.05) and liver (P < 0.05), but had no effect in kidney. The DHA oil-fed rats had greater phospholipid hydroperoxide accumulations in plasma (191-192% of control rats), liver (170-230%) and kidney (250-340%), whereas the a-tocopherol level was reduced concomitantly (21-73% of control rats). Consistent with these results, rats fed DHA-containing oils had more thiobarbituric reactive substances in these organs than the controls. Thus, high incorporation of (n-3) fatty acids (mainly DHA) into plasma and tissue lipids due to DHA-containing oil ingestion may undesirably affect tissues by enhancing susceptibility of membranes to lipid peroxidation and by disrupting the antioxidant system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available