3.8 Article

Assessment of flow and cure monitoring using direct current and alternating current sensing in vacuum-assisted resin transfer molding

Journal

SMART MATERIALS & STRUCTURES
Volume 9, Issue 6, Pages 727-736

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0964-1726/9/6/301

Keywords

-

Ask authors/readers for more resources

Vacuum-assisted resin transfer molding (VARTM) is an emerging manufacturing technique that holds promise as an affordable alternative to traditional autoclave molding and automated fiber placement for producing large-scale structural parts. In VARTM, the fibrous preform is laid on a single-sided tool, which is then bagged along with the infusion and vacuum lines. The resin is then infused through the preform, which causes simultaneous wetting in its in-plane and transverse directions. An effective sensing technique is essential so that comprehensive information pertaining to the wetting of the preform, arrival of resin at various locations, cure gradients associated with thickness and presence of dry spots may be monitored. In the current work, direct current (dc) and alternating current sensing/monitoring techniques were adopted for developing a systematic understanding of the resin position and cure on plain weave S2-glass preforms with Dow Derakane vinyl ester VE 411-350, Shell EPON RSL 2704/2705 and Si-AN epoxy as the matrix systems. A SMARTweave de sensing system was utilized to conduct parametric studies: (a) to compare the flow and curl of resin through the stitched and non-stitched preforms; (b) to investigate the influence of sensor positioning, i.e, top, middle and bottom layers; and (c) to investigate the influence of positioning of the process accessories, i.e. resin infusion point and vacuum point on the composite panel. The SMARTweave system was found to be sensitive to all the parametric variations introduced in the study. Furthermore, the results obtained from the SMARTweave system were compared to the curl monitoring studies conducted by using embedded interdigitated (IDEX) dielectric sensors. The results indicate that SMARTweave sensing was a viable alternative to obtaining resin position and cure, and was more superior in terms of obtaining global information, in contrast to the localized dielectric sensing approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available