4.7 Review

Chemical neuroanatomy of the vesicular amine transporters

Journal

FASEB JOURNAL
Volume 14, Issue 15, Pages 2435-2449

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.00-0202rev

Keywords

aminergic neuron; endocrine cell; CNS; amine-handling cell; autonomic; immune; inflammatory

Ask authors/readers for more resources

Acetylcholine, catecholamines, serotonin, and histamine are classical neurotransmitters, These small molecules also play important roles in the endocrine and immune/inflammatory systems, Serotonin secreted from enterochromaffin cells of the gut epithelium regulates gut motility; histamine secreted from basophils and mast cells is a major regulator of vascular permeability and skin inflammatory responses; epinephrine is a classical hormone released from the adrenal medulla, Each of these molecules is released from neural, endocrine, or immune/inflammatory cells only in response to specific physiological stimuli. Regulated secretion is possible because amines are stored in secretory vesicles and released via a stimulus-dependent exocytotic event. Amine storage-at concentrations orders of magnitude higher than in the cytoplasm-is accomplished in turn by specific secretory vesicle transporters that recognize the amines and move them from the cytosol into the vesicle. Immunohistochemical visualization of specific vesicular amine transporters (VATs) in neuronal, endocrine, and inflammatory cells provides important new information about how amine-handling cell phenotypes arise during development and how vesicular transport is regulated during homeostatic response events, Comparison of the chemical neuroanatomy of VATs and amine biosynthetic enzymes has also revealed cell groups that express vesicular transporters but not enzymes for monoamine synthesis, and vice versa: their function and regulation is a new topic of investigation in mammalian neurobiology, The chemical neuroanatomy of the vesicular amine transporters is reviewed here. These and similar data emerging from the study of the localization of the recently characterized vesicular inhibitory and excitatory amino acid transporters will contribute to understanding chemically coded synaptic circuitry in the brain, and amine-handling neuroendocrine and immune/inflammatory cell regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available