4.7 Article

pH-Triggered Nanoparticle Mediated Delivery of siRNA to Liver Cells in Vitro and in Vivo

Journal

BIOCONJUGATE CHEMISTRY
Volume 24, Issue 3, Pages 314-332

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bc3004099

Keywords

-

Funding

  1. Mitsubishi Chemical Corporation
  2. IC-Vec Ltd
  3. Somagenics
  4. EPSRC [EP/F003188/2] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/F003188/2] Funding Source: researchfish

Ask authors/readers for more resources

Recently, we reported for the first time the development of pH-triggered nanoparticles for the functional delivery of small interfering RNA (siRNA) to liver for treatment of hepatitis B virus infections in vivo. Here, we report on systematic formulation and biophysical studies of three different pH-triggered nanoparticle formulations looking for ways to improve on the capabilities of our previous nanoparticle system. We demonstrate how pH-triggered, PEGylated siRNA nanoparticles stable with respect to aggregation in 80% serum can still release siRNA payload at pH 5.5 within 30 min. This capability allows functional delivery to cultured murine hepatocyte cells in vitro, despite a high degree of PEGylation (5 mol %). We also demonstrate that pH-triggered, PEGylated siRNA nanoparticles typically enter cells by clathrin-coated pit endocytosis, but functional delivery requires membrane fusion events (fusogenicity). Biodistribution studies indicate that >70% of our administered nanoparticles are found in liver hepatocytes, post intravenous administration. Pharmacodynamic experiments show siRNA delivery to murine liver effecting maximum knockdown 48 h post administration from a single dose, while control (nontriggered) nanoparticles require 96 h and two doses to demonstrate the same effect. We also describe an anti-hepatitis C virus (HCV) proof-of-concept experiment indicating the possibility of RNAi therapy for HCV infections using pH-triggered, PEGylated siRNA nanoparticles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available