4.7 Article

Blood-Brain Barrier Molecular Trojan Horse Enables Imaging of Brain Uptake of Radioiodinated Recombinant Protein in the Rhesus Monkey

Journal

BIOCONJUGATE CHEMISTRY
Volume 24, Issue 10, Pages 1741-1749

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bc400319d

Keywords

-

Ask authors/readers for more resources

Recombinant proteins are large molecule drugs that do not cross the blood-brain barrier (BBB). However, BBB-penetration of protein therapeutics is enabled by re-engineering the recombinant protein as IgG fusion proteins. The IgG domain is a monoclonal antibody (mAb) against an endogenous BBB receptor-mediated transport system, such as the human insulin receptor (HIR), and acts as a molecular Trojan horse to ferry the fused protein across the BBB. In the present study, a recombinant lysosomal enzyme, iduronate 2-sulfatase (IDS), is fused to the HIRMAb, and BBB penetration of the IDS alone vs the HIRMAb-IDS fusion protein is compared in the Rhesus monkey. Recombinant IDS and the HIRMAb-IDS fusion protein were radiolabeled with indirect iodination with the [I-125]-Bolton-Hunter reagent and with direct iodination with Iodogen/[I-125]-idodine. IDS and the HIRMAb-IDS fusion protein have comparable plasma pharmacokinetics and uptake by peripheral organs. IDS does not cross the BBB. The HIRMAb-IDS fusion protein crosses the BBB and the brain uptake is 1% of injected dose/brain. Brain imaging shows HIRMAb-IDS penetration to all parts of brain, and immunoprecipitation of brain radioactivity shows intact fusion protein in brain. The use of BBB molecular Trojan horses enables brain imaging of recombinant proteins that are re-engineered for BBB transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available