4.6 Article

A fully functional rod visual pigment in a blind mammal - A case for adaptive functional reorganization?

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 49, Pages 38674-38679

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M008254200

Keywords

-

Ask authors/readers for more resources

In the blind subterranean mole rat Spalax ehrenbergi superspecies complete ablation of the visual image-forming capability has been accompanied by an expansion of the bilateral projection from the retina to the suprachiasmatic nucleus. We have cloned the open reading frame of a visual pigment from Spalax that shows >90% homology with mammalian rod pigments. Baculovirus expression yields a membrane protein with all functional characteristics of a rod visual pigment (lambda (max) = 497 +/- 2 nm; pK(alpha) of meta I/meta II equilibrium = 6.5; rapid activation of transducin in the light). We not only provide evidence that this Spalax rod pigment is fully functional in vitro but also show that all requirements for a functional pigment are present in vivo. The physiological consequences of this unexpected finding are discussed. One attractive option is that during adaptation to a subterranean lifestyle, the visual system of this mammal has undergone mosaic reorganization, and the visual pigments have adapted to a function in circadian photoreception.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available