4.7 Article

Synthesis, In Vitro Evaluation, and In Vivo Metabolism of Fluor/Quencher Compounds Containing IRDye 800CW and Black Hole Quencher-3 (BHQ-3)

Journal

BIOCONJUGATE CHEMISTRY
Volume 22, Issue 7, Pages 1287-1297

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bc100457s

Keywords

-

Ask authors/readers for more resources

Protease-cleavable peptides containing a suitable fluor/quencher (Fl/Q) pair are optically dark until cleaved by their target protease, generating fluorescence. This approach has been used with many Fl/Q pairs, but little has been reported with IRDye 800CW, a popular near-infrared (NIR) fluor. We explored the use of the azo-bond-containing Black Hole Quencher 3 (BHQ-3) as a quencher for IRDye 800CW and found that 1RDye 800CW/BHQ-3 is a suitable Fl/Qpair, despite the lack of proper spectral overlap for fluorescence resonance energy transfer (FRET) applications. Cleavage of IRDye 800CW-PLGLK(BHQ-3)AR-NH2 (8) and its D-arginine (Dare analogue (9) by matrix metalloproteinases (MMPs) in vitro yielded the expected cleavage fragments. In vivo, extensive metabolism was found. Significant decomposition of a non-cleavable control IRDye 800CW-(1,13-diamino-4,7,10-trioxatridecane)-BHQ-3 (10) was evident in plasma of normal mice by 3 min post injection. The major metabolite showed a m/z and UV/vis spectrum consistent with azo bond cleavage in the BHQ-3 moiety. Preparation of an authentic standard of this metabolite (11) confirmed the assignment. Although the IRDye 800CW/BHQ-3 constructs showed efficient contact quenching prior to enzymatic cleavage, BHQ:3 should be used with caution in vivo, due to instability of its azo bond.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available