4.5 Article

A Novel Nano/Micro-Fibrous Scaffold by Melt-Spinning Method for Bone Tissue Engineering

Journal

JOURNAL OF BIONIC ENGINEERING
Volume 12, Issue 1, Pages 117-128

Publisher

SCIENCE PRESS
DOI: 10.1016/S1672-6529(14)60106-2

Keywords

PLGA-based scaffold; melt-spinning; nano/micro-fibers; bone tissue engineering

Funding

  1. National Natural Science Foundation of China [51103149, 51273195, 51321062]

Ask authors/readers for more resources

In order to architecturally and functionally mimic native Extracellular Matrix (ECM), a novel micro/nano-fibrous scaffold of hydroxyapetite/poly(lactide-co-glycolide) (HA/PLGA) composite was successfully prepared by melt-spinning method. A porous three-dimensional scaffold fabricated by melt-molding particulate-leaching method was used as control. This kind of scaffold comprising both nanofiber and microfiber had an original structure including a nano-network favorable for cell adhesion, and a micro-fiber providing a strong skeleton for support. The microfibers and nanofibers were blended homogeneously in scaffold and the compression strength reached to 6.27 MPa, which was close to human trabecular bone. The typical micro/nano-fibrous structure was more beneficial for the proliferation and differentiation of Bone Mesenchymal Stem Cells (BMSCs). The calcium deposition and Alkaline Phosphatase (ALP) activity were evaluated by the differentiation of BMSCs, and the results indicated that the temporary ECM was very beneficial for the differentiation of BMSCs into maturing osteoblasts. For repairing rabbit radius defects in vivo, micro/nano-fibrous scaffold was used for the purpose of rapid bone remodeling in the defect area. The results showed that a distinct bony callus of bridging was observed at 12 weeks post-surgery and the expression of osteogenesis-related genes (bone-morphogenetic protein-2, Osteonectin, collagen-I) increased because of the ECM-like structure. Based on the results, the novel micro/nano-fibrous scaffold might be a promising candidate for bone tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available