4.4 Article

Vibriobactin biosynthesis in Vibrio cholerae:: VibH is an amide synthase homologous to nonribosomal peptide synthetase condensation domains

Journal

BIOCHEMISTRY
Volume 39, Issue 50, Pages 15513-15521

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi001651a

Keywords

-

Funding

  1. NIAID NIH HHS [AI042738] Funding Source: Medline

Ask authors/readers for more resources

The Vibrio cholerae siderophore vibriobactin is biosynthesized from three molecules of 2,3-dihydroxybenzoate (DHB), two molecules of L-threonine, and one of norspermidine. Of the four genes positively implicated in vibriobactin biosynthesis, we have here expressed, purified, and assayed the products of three: vibE, vibB, and vibH. All three are homologous to nonribosomal peptide synthetase (NRPS) domains: VibE is a 2,3-dihydroxybenzoate-adenosyl monophosphate Ligase, VibB is a bifunctional isochorismate lyase-aryl carrier protein (ArCP), and VibH is a novel amide synthase that represents a free-standing condensation (C) domain. VibE and VibB are homologous to EntE and EntB from Escherichia coli enterobactin synthetase; VibE activates DHB as the acyl adenylate and then transfers it to the free thiol of the phosphopantetheine arm of VibB's ArCP domain. VibH then condenses this DHB thioester (the donor) with the small molecule norspermidine (the acceptor), forming N-1-(2,3-dihydroxybenzoyl)norspermidine (DHB-NSPD) with a k(cat) of 600 min(-1) and a K-m for acyl-VibB of 0.88 muM and for norspermidine of 1.5 mM. Exclusive monoacylation of a primary amine of norspermidine was observed. VibH also tolerates DHB-acylated EntB and 1,7-diaminoheptane, octylamine, and hexylamine as substrates, albeit at lowered catalytic efficiencies. DHB-NSPD possesses one of three acylations required for mature vibriobactin, and its formation confirms VibH's role in vibriobactin biosynthesis. VibH is a unique NRPS condensation domain that acts upon an upstream carrier-protein-bound donor and a downstream amine, turning over a soluble amide product, in contrast to an archetypal NRPS-embedded C domain that condenses two carrier protein thioesters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available