4.6 Article

A novel membrane anchor function for the N-terminal amphipathic sequence of the signal-transducing protein IIAGlucose of the Escherichia coli phosphotransferase system

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 275, Issue 51, Pages 39811-39814

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C000709200

Keywords

-

Ask authors/readers for more resources

Enzyme IIA(Glucose) (IIA(Glc)) is a signal-transducing protein in the phosphotransferase system of Escherichia coli. Structural studies of free IIA(Glc) and the HPr-IIA(Glc) complex have shown that IIA(Glc) comprises a globular P-sheet sandwich core (residues 19-168) and a disordered N-terminal tail (residues 1-18). Although the presence of the N-terminal tail is not required for IIA(Glc) to accept a phosphorus from the histidine phosphocarrier protein HPr, its presence is essential for effective phosphotransfer from IIA(Glc) to the membrane-bound IIBCGlc. The sequence of the N-terminal tail suggests that it has the potential to form an amphipathic helix. Using CD, we demonstrate that a peptide, corresponding to the N-terminal 18 residues of IIA(Glc), adopts a helical conformation in the presence of either the anionic lipid phosphatidylglycerol or a mixture of anionic E. coli lipids phosphatidylglycerol (25%) and phosphatidylethanolamine (75%), The peptide, however, is in a random coil state in the presence of the zwitterionic lipid phosphatidylcholine, indicating that electrostatic interactions play a role in the binding of the lipid to the peptide. In addition, we show that intact IIA(Glc) also interacts with anionic lipids, resulting in an increase in helicity, which can be directly attributed to the N-terminal segment. From these data we propose that IIA(Glc) comprises two functional domains: a folded domain containing the active site and capable of weakly interacting with the peripheral IIB domain of the membrane protein IIBCGlc; and the N-terminal tail, which interacts with the negatively charged E, coli membrane, thereby stabilizing the complex of IIA(Glc) with IIBCGlc. This stabilization is essential for the final step of the phosphoryl transfer cascade in the glucose transport pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available