4.7 Article

Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 113, Issue 24, Pages 10913-10927

Publisher

AIP Publishing
DOI: 10.1063/1.1324708

Keywords

-

Ask authors/readers for more resources

We have implemented classical Ewald and particle-mesh Ewald (PME) based treatments of fixed and induced point dipoles into the sander molecular dynamics (MD) module of AMBER 6. During MD the induced dipoles can be propagated along with the atomic positions either by iteration to self-consistency at each time step, or by a Car-Parrinello (CP) technique using an extended Lagrangian formalism. In this paper we present the derivation of the new algorithms and compare the various options with respect to accuracy, efficiency, and effect on calculated properties of a polarizable water model. The use of PME for electrostatics of fixed charges and induced dipoles together with a CP treatment of dipole propagation in MD simulations leads to a cost overhead of only 33% above that of MD simulations using standard PME with fixed charges, allowing the study of polarizability in large macromolecular systems. (C) 2000 American Institute of Physics. [S0021- 9606(00)50547-9].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available